42 research outputs found

    Detection of human parvovirus B19 in papillary thyroid carcinoma

    Get PDF
    To evaluate whether parvovirus B19, a common human pathogen, was also involved in papillary thyroid carcinoma (PTC), 112 paraffin-embedded thyroid specimens of benign nodules, papillary, medullary and follicular carcinomas, and normal controls were examined for B19 DNA and capsid protein by nested PCR, in situ hybridisation (ISH) and immunohistochemistry (IHC). The expression of the nuclear factor-κB (NF-κB) was investigated by IHC. The results showed B19 DNA commonly exists in human thyroid tissues; however, there were significant differences between PTC group and normal controls, and between PTC and nonneoplastic adjacent tissues (P<0.001). The presence of viral DNA in PTC neoplastic epithelium was confirmed by laser-capture microdissection and sequencing of nested PCR products. B19 capsid protein in PTC group was significantly higher than that of all the control groups and nonneoplastic adjacent tissues (P⩽0.001). Compared with control groups, the activation of NF-κB in PTC group was significantly increased (P⩽0.02), except for medullary carcinomas, and the activation of NF-κB was correlated with the viral protein presence (P=0.002). Moreover, NF-κB was colocalised with B19 DNA in the neoplastic epithelium of PTC by double staining of IHC and ISH. These results indicate for the first time a possible role of B19 in pathogenesis of PTC

    Operational experience and commissioning of the Belle II vertex detector

    Get PDF

    Belle II Vertex Detector Performance

    Get PDF
    The Belle II experiment at the SuperKEKB accelerator (KEK, Tsukuba, Japan) collected its first e+e− collision data in the spring 2019. The aim of accumulating a 50 times larger data sample than Belle at KEKB, a first generation B-Factory, presents substantial challenges to both the collider and the detector, requiring not only state-of-the-art hardware, but also modern software algorithms for tracking and alignment. The broad physics program requires excellent performance of the vertex detector, which is composed of two layers of DEPFET pixels and four layers of double sided-strip sensors. In this contribution, an overview of the vertex detector of Belle II and our methods to ensure its optimal performance, are described, and the first results and experiences from the first physics run are presented

    Direct Photon Production in 158 AGeV Pb+Pb Collisions

    Full text link
    A measurement of direct photon production in Pb+Pb collisions at 158 AGeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation.Comment: Talk presented at Nucleus-Nucleus 2000, Strasbourg, Franc

    Multi-spectroscopic and theoretical analyses on the diphenyl ether–tert-butyl alcohol complex in the electronic ground and electronically excited state

    No full text
    Aromatic ethers such as diphenyl ether (DPE) represent molecules with different docking sites for alcohols leading to competing OH–O and OH–π interactions. In a multi-spectroscopic approach in combination with quantum chemical calculations the complex of DPE with tert-butyl alcohol (t-BuOH) is investigated in the electronic ground state (S0) and the electronically excited state (S1). FTIR, microwave as well as mass- and isomer-selective IR/R2PI spectra are recorded, revealing co-existing OH–O and OH–π isomers in the S0 state. Surprisingly, they are predicted to be of almost equal stability in contrast to the previously investigated DPE–MeOH complex, where the OH–π structure is preferred by both theory and experiment. The tert-butyl group in t-BuOH allows for a simultaneous optimization of hydrogen-bonding and dispersion interactions, which provides a sensitive meeting point between theory and experiment. In the electronically excited state of DPE–t-BuOH, vibrational spectra could be recorded separately for both isomers using UV/IR/UV spectroscopy. In the S1 state the same structural binding motifs are obtained as in the S0 state with the OH–O bond being weakened for the OH–O arrangement and the OH–π interaction being strengthened in the case of the OH–π isomer compared to the S0 state

    Aromatic embedding wins over classical hydrogen bonding – a multi-spectroscopic approach for the diphenyl ether–methanol complex

    No full text
    Dispersion interactions are omnipresent in intermolecular interactions, but their respective contributions are difficult to predict. Aromatic ethers offer competing docking sites for alcohols: the ether oxygen as a well known hydrogen bond acceptor, but also the aromatic π system. The interaction with two aromatic moieties in diphenyl ether can tip the balance towards π binding. We use a multi-spectroscopic approach to study the molecular recognition, the structure and internal dynamics of the diphenyl ether–methanol complex, employing infrared, infrared-ultraviolet and microwave spectroscopy. We find that the conformer with the hydroxy group of the alcohol binding to one aromatic π cloud and being coordinated by an aromatic C–H bond of the other phenyl group is preferred. Depending on the expansion conditions in the supersonic jet, we observe a second conformer, which exhibits a hydrogen bond to the ether oxygen and is higher in energy

    T helper cell-mediated interferon-gamma expression after human parvovirus B19 infection: persisting VP2-specific and transient VP1u-specific activity

    No full text
    Human parvovirus B19 is a small non-enveloped DNA virus with an icosahedral capsid consisting of proteins of only two species, the major protein VP2 and the minor protein VP1. VP2 is contained within VP1, which has an additional unique portion (VP1u) of 227 amino acids. We determined the ability of eukaryotically expressed parvovirus B19 virus-like particles consisting of VP1 and VP2 in the ratio recommended for vaccine use, or of VP2 alone, to stimulate, in an HLA class II restricted manner, peripheral blood mononuclear cells (PBMC) to proliferate and to secrete interferon gamma (IFN-γ) and interleukin (IL)-10 cytokines among recently and remotely B19 infected subjects. PBMC reactivity with VP1u was determined specifically with a prokaryotically expressed VP1u antigen. In general, B19-specific IFN-γ responses were stronger than IL-10 responses in both recent and remote infection; however, IL-10 responses were readily detectable among both groups, with the exception of patients with relapsed or persisting symptoms who showed strikingly low IL-10 responses. Whereas VP1u-specific IFN-γ responses were very strong among the recently infected subjects, the VP1u-specific IFN-γ and IL-10 responses were virtually absent among the remotely infected subjects. The disappearance of VP1u-specific IFN-γ expression is surprising, as B-cell immunity against VP1u is well maintained

    The first microsolvation step for furans: New experiments and benchmarking strategies

    No full text
    The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight
    corecore